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We cons ider  a m o d e l  p r o b l e m  on the genera t ion  of a radio  s ignal  by  a nons ta t ionary  g a m m a -  
ray  sou rce .  The p r o b l e m  is e s sen t i a l ly  two-dimens iona l  in space  but is reduced  to a number  
of one-d imens iona l  nonsta t ionary  p r o b l e m s .  The r e su l t s  of a numer ica l  solution of the p rob-  
l em a re  d i scussed .  

A powerful  g a m m a - r a y  source  is capable  of genera t ing  an e l ec t romagne t i c  field of cons iderab le  in- 
tens i ty .  The g a m m a  quanta p ropaga ted  in the med ium will give r i s e  to a d i rec ted  flux of Compton e l ec t rons .  
This  flux p lays  the ro le  of an ex t raneous  e lec t r i c  cu r r en t  (a c u r r e n t  genera ted  by nonelec t romagnet ic  
fo rces )  and at  the s a m e  t ime causes  some  ionization, and hence conductivity,  of the med ium.  The medium 
may  be  a s s u m e d  to be nonionized and nonconducting in its initial  s ta te .  As a resu l t ,  conduction cu r r en t s  
will a r i s e  in the med ium in addition to the ex t raneous  Compton c u r r e n t s .  

In the spher i ca l ly  s y m m e t r i c  case  these cu r r en t s  will obviously genera te  only a radia l  e l ec t r i c  field. 
In the genera l  case ,  when the re  a re  deviat ions f rom spher i ca l  s y m m e t r y  (these may  be due to the anisot ropy 
of the sou rce  o r  to the inhomogenei ty  and an iso t ropy  of the medium),  the g a m m a  rays  will genera te  an 
e l ec t romagne t i c  field in the space  sur rounding  the source .  The p rob lem of calculat ing this field is s eve re ly  
compl ica ted  by the need to ca lcula te  at the s a m e  t ime  the ionization kinet ics  in the given rea l  medium.  
C o n s i d e r a b l e  diff icult ies  a r i s e  f rom the fact  that  the p r o c e s s  is not one-d imens iona l ,  if we cons ider  the 
genera l  case  of the genera t ion  of an e l ec t romagne t i c  field. The nonsta t ionar i ty  of the g a m m a - r a y  source ,  
which leads  to nons ta t ionar i ty  of the en t i re  p r o c e s s ,  is of cons iderable  s ignif icance.  The p r e s e n t  study is 
devoted to the phys ica l  formula t ion  and numer i ca l  solution of such a genera l  p rob l em.  However,  in the 
formula t ion  of the p rob l em  we have made a number  of s impl i f ica t ions  and ideal izat ions,  re la t ing  to the fo r -  
mula t ion  of the ini t ial  and boundary  condit ions,  the g e o m e t r y  of the p rob lem,  the descr ip t ion  of the ioniza-  
tion kinet ics ,  the approximat ion  of the nonsta t ionary  g a m m a - r a y  source ,  and the laws governing the p ropa -  
gation of the g a m m a  quanta and the Compton e l ec t rons .  

The p r e s e n t  study contains the solution of a model  p rob l em on the genera t ion  of an e l ec t romagne t i c  
field by a pulsed g a m m a - r a y  source  s i tuated in an ideal ly conducting plane su r f ace .  The medium is taken 
to be a i r  of normal  densi ty at zero  alt i tude.  The e l ec t romagne t i c  field is a s sumed  to be zero  at the initial 
ins tant  of t ime .  It  is ve ry  impor tan t  that  under  the given phys ica l  conditions the c h a r a c t e r i s t i c  s  
of the e l ec t romagne t i c  field fall  in the radio  range,  i .e . ,  it is radio  pulses  that a re  genera ted .  The p rob -  
l em is in te res t ing  by r e a s o n  of the fact  that  the genera t ion  of a radio  pulse comes  about as the r e su l t  of a 
chain of different  but i n t e r r e l a t ed  phys ica l  phenomena (gamma quanta, Compton e lec t rons ,  ionization and 
conduction cu r r en t s ,  e l ec t romagne t i c  field)~ 

1. Kompanee ts  [1] and Gilinsky [2] cons ide red  the p r o b l e m  of the genera t ion  of a radio  signal  by a 
nons ta t ionary  g a m m a - r a y  source  whose var ia t ion  with angle is c lose  to i so t rop ie .  The distr ibution of the 
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Fig. 1 

Compton-e lec t ron  cur ren t  j and the conduction cu r ren t  a 
have the form (we use the notation of [2]) 

](r, O, t)--]o(r, t)-,L~]o(r, t) cos 0; 

s(r, Oi t)=oo(r, t)+~so(r, t) cos O, 

where ~ is a small  pa r ame te r .  

This functional relat ionship is not universa l  and is not 
applicable when the source  is situated near or  on the bound- 
ary  of a conducting ha l f - space .  In [1, 2] a number of physical  
constants corresponding to the p r e s s u r e  of a ir  at zero altitude 
are  used.  The physical  formulat ion of the problem does not 
take account of the distort ion of the result ing fields by the 
underlying conductive sur face .  This effect is taken into ac-  
count in [3, 4], but those studies deal with a source  whose 
intensity is not t ime-dependent .  

In the present  study we discuss  a method for reducing 
to a number of one-dimensional  nonstat ionary problems the 
essential ly two-dimensional  spatial problem of the e lec t ro-  

magnetic  fields generated in air by a nonstat ionary g a m m a - r a y  source situated direct ly  at the boundary of 
a conducting hal f -space  ; the resul ts  of the solution of a model problem are given. 

A numerica l  method for the solution of problems of this type is descr ibed in [5]. It is based  on the 
method of cha rac t e r i s t i c s .  In the presen t  study the numerical  integration of Maxwell 's  equations was 
ca r r i ed  out by the factorizat ion method,* which has a number of advantages: it is more  convenient for 
calculation, since all the equations are  integrated along one line, it makes it possible to take proper  account 
of the delay in the source,  and it has low sensit ivity to calculation e r r o r s .  

2o The physical  mechanism of the t ransformat ion  of a g a m m a - r a y  pulse into an e lec t romagnet ic  
field pulse is connected with the generat ion of currents  of Compton electrons in air  i r radia ted  with gamma 
quanta f rom the source (as in [1, 2]). 

In the model problem being analyzed, the g a m m a - r a y  source is assumed to be an isotropic point 
source;  only the electron conductivity of the air  is taken into account, and the conductivity of the lower 
half -space is assumed to be infinite. 

The problem reduces  to the integration of Maxwell 's  equations with cur ren ts  of Compton e lect rons  
given in the form 

]=(](r, O, t), O, 0); ](r, 0, t)=](r, t)r 

We represent this functional relationship in the form of a series of Legendre polynomials, 

] (r, O, t) = ] (r, t) ~ C~P~ (cos 0), 

where 
C~ = [I -- (-- l)Zl 2l ~ I ~1/2 

The equations and the boundary conditions can be satisfied if we t ry  to find a solution for the nonzero com-  
ponents of the e lect romagnet ic  field Er,  EO, He) in the form 

E r _ _  N- ~ 1 - ~ E,~ (r, t) P~ (cos 0); E0 = . - -  Ee~ (r, t) P~ (cos 0); 

He=X7 1 i 7" -7- HCz (r, t) U~ (cos 0), 

*The method for taking account of Maxwell' s equations was proposed by A. A, Milyutin and E. I. Dinaburg. 
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where P~ (x) = (1 - x2)l/2dP/(x)/dx is the associa ted 
Legendre polynomial .  

In this case the variat ion as a function of angle 
in theequa t ions  is considered separately,  and the 
problem reduces  to the in tegra t ionofone-d imens ional  
nonstat ionary equations for the coefficients of the 
expansion of  Er/ ,  E o l ,  H~pl for each of the l, 

i aE~ Z(t+l) H~ 4n 
- -  - -  c [(~ (r ,  t) Erz  ~ ] (r,  t) C t]; (2.1) 

c O t  r 2 . . . . .  . 

I aEot Ol~r~z ~ a (r, " - -  I OH l OEot 
c dt Or c &" 

The solution of the equations will be sought 
in the region (~ -< r -< ct; a / e  -< t -< T); a, T are  

constants .  Each of the functions must  sat isfy a zero  initial condition. The boundary conditions E o l  = 0 

when r = a ,  E o l - t ~ l  = 0 and Er/ = 0 when r = c t  define a unique solution of the sys tem (2.1). The f i r s t  
of these conditions means physical ly that the source  is surrounded by an ideally conducting sphere of radius 
a, and the other  two conditions must  be sat isf ied at the front of a disturbance being propagated at the speed 
of light [6]. 

Hereaf ter  we shall use the dimensionless  coordinate x = ttr and time y = t~ct, and, following [1, 2], 
we shall express  the flux density of the Compton e lect rons  by 

](r ,  t )=e~ta l ,  N ~ t c e - X x  - ~ /  (g ' x ) [4n ,  

where l e ~3 and tt -I ~250 m are the mean free paths of a Compton e lec t ron and a gamma quantum, r e spec -  
tively; e is the charge of the electron;  N is the total number of gamma quanta emitted by the source;  and 
the function f(y) descr ibes  the g a m m a - r a y  flux intensity as a function of t ime ( i / (g) dg = 1 ~ j .  

In [7] the functional relat ionship f(t) in the stage of initial increase  was expressed  by the function 
e at,  where ~ = 108 sec -1, and in [1, 2] and others the attenuation stage of the source  was descr ibed by the 
function e-fit, where fl = 106sec -1. 

In the present  study we shall use for the function f(y) a simple interpolation process  (where ~ ,  A, 
A are  constants) which approximately descr ibes  the data given by the authors of [2, 7], 

i ye o4j 
/(Y) =: I A_I e(~+~);~' (2.2) 

o 0  

I = ~  ~!" A Ye~g dy.  
Jr e(~+a)y 

The electron conductivi ty of the air,  which is the only one taken into account, is given in the form 

"o( r. t~) --- e k ~  3v Ne- '~ 'x  ' r (g  - -  x ) / 4~ ,  

where the dimensionless  function r(y) is found f rom the equation 

dr , ;, .y -' ~ c r = ~ ( Y ) '  1"(0)=0. 

Here k ~ 10~ T ~ 1.1 �9 108 sec -1 [8] are  the mobility and the sticking probability of a secondary elec-  
tron, respect ively;  v = 3 �9 104, and the function q~(y) descr ibes  the variat ion with t ime of the density of 
secondary-e lec t ron  sources  (the g a m m a - r a y  energy absorbed per  unit of time). 

The variat ion with time of the ionization sources  at each point of the space is descr ibed by a pulse 
with a somewhat longer charac te r i s t i c  time than for the function f(y), which descr ibes  the variat ion of the 
Compton cur ren t s  (because of the different contributions made by the effects of multiple quantum scat ter ing 
to the values of Compton-e lec t ron cur ren t  and absorbed energy).  For  the function (p(y) we take an in ter -  
polation p rocess  of the same form (2.2) with the pa rame te r  A I < A .  For  such an interpolation of the cur -  
rent  and conductivity values the rat io j /a ,  defining the value of the radial  polar izat ion field, decreases  
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with t i m e  at  e v e r y  po in t  of the space  when t is  l a r g e .  Th i s  has a s u b s t a n t i a l  effect  on the t i m e - d e p e n d e n t  
evo lu t ion  of the e l e c t r o m a g n e t i c  f ie ld  that  is  c r e a t e d .  

As the s ca l e  for  the f ie lds  we take the quant i ty  E 0 = l e u c / k u .  F o r  the adopted va lues  of the Constants  
E 0 ~ 3 . 6 " 1 0 2  V / m  

E~: =: E 0 Ez; Eel =: Fn,~_ ez; H.;z - :  - - ~ h  r E~ 

T h e n  the d i m e n s i o n l e s s  func t ions  El, el, and h I m u s t  sa t i s fy  the equa t ions  

:"~L :(:-= i; 4n [ #  I--_ ], ] 
, , ,  - 7 h , - - - - .  ( x . g ) E z - - E o  ( x , g )  Cz ; 

�9 , p tc k 

@1 5 h ;  4 : t  
- -  = . . . . .  o '  ( x .  g )  s~; 
dy : t , r  ttC ' ' 

d]~ ; Of ! 
Ez 

d:] ~#.Z 

and the ze ro  in i t i a l  da ta  and the b o u n d a r y  condi t ions  

el(x~., g)=O; s ~ ( x = g ,  g ) = h z ( x = g ,  g); xo=~ ta .  

(2.3) 

In Eqs .  (2.3) 

:5" ( z ,  g) = 4'-5 o i x ,  ~') = R e - % - 2 r  (g - -  x); 
LU: 

4.~ i ( x .  y) = B e - ~ x - ' ~ i ( g - - x ) ;  
i '  ( z ,  ~,) = ~s,---7. ' 

R =e/Lu-~ A :c. 

In th is  f o r m  the p r o b l e m  has b e e n  c o m p l e t e l y  f o r m u l a t e d  and can be i n t e g r a t e d  n u m e r i c a l l y .  

3 .  We make  the change  of independen t  v a r i a b l e s  x = x, T = y - x ;  then the s y s t e m  (22)  b e c o m e s  

0E~ z (z -:- t) . E . . . .  (x, ~) Cz; 
0~ -- ~z ] h - -  ~ '(x 'T) . z - - ]  

,)e__~z = . . . .  a]2~ , ah z o' (x, ~) sl; 
Ol UZ; ~ UT 

Ohl O~z Oel Ez 
.-7- = - -  ,~.-V + o-7, - -  

( 3 . 1 )  

with the b o u n d a r y  cond i t ions  

e l = 0  w h e n x = x 0 ; e  I , h /  = 0 ,  E l = 0  when 7 = 0 .  

In the new p lane  (x, 7) the r eg ion  of ca l cu l a t i on  was  expanded to a r e c t a n g l e  (x 0 _< x -< Xk; 0 -< T_< 7k, 
where  r k = ucT),  and the ind ica ted  condi t ions  b e c a m e  in su f f i c i en t  for  ob ta in ing  a unique so lu t ion  of the 
s y s t e m  (3~ On the l ine  x = x k (where x k is a su f f i c ien t ly  l a r ge  quant i ty)  we spec i f i ed  the addi t ional  con -  
di t ion e l = h  l .  

F o r  the r e s t  of the d i s c u s s i o n  i t  is conven ien t  to add and s u b t r a c t  the second  and t h i r d  equa t ions  of 
the s y s t e m  (3.1) and r e d u c e  the s y s t e m  to the fo rm 
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0E~ z (l + t ) .  ' (z ,  T) Ez § i '  (z, ~) Cz; 

o z  - - -  o '  ( z ,  ~ )  e l - -  El; 

2 0 (e Z -- hz) 0 (e~ -- hz) o' (x, ~) e l § E l 
O'~ 8x 

(3,2) 

with the i n i t i a l  and b o u n d a r y  cond i t ions  

for T=O sl=O, hi=O, Et= O; for x : x o  el=O; for x=xl~ ez=hz. 

F o r  a n u m e r i e a l  so lu t ion  of the p r o b l e m  s ta ted  above,  we s e l e c t e d  the r e c t a n g u l a r  ne twork  T n = nAT, 
x i = x 0 + i A x ,  where  n = 1, 2, . . . N ;  i = 1,2 . . . .  I .  We made  u se  of a s y m m e t r i c  a p p r o x i m a t i o n  to the 
d e r i v a t i v e s ,  and the d e s i r e d  func t ions  at  the point  i + 1/2 were  the a r i t h m e t i c  m e a n  be t w e e n  the va lues  of 

these  func t ions  a t  the po in t s  i and i + 1~ Then  the s y s t e m  of equa t ions  (3.2) can  be w r i t t e n  in  f i n i t e -d i f f e -  
r e n c e  f o r m  as 

,~ n §  t r, E,,~+' (E~)i+,i2] (zh,)i+,i2 , , ~ , . + i  . . . . .  ,~+, - -  = - -  t U ~ l l i §  -7- t] ) i + l / " O / ,  av I.t u ~ + i / ~ - -  (3.3) 

Z = l ( t - ~ i )  x - - 2 ;  

, . , .+ ,  
. . . .  U i + i  - -  ( e l  - ! - h  ~n+i  = _ _  [ 0 ' 8  ~n+t  - - { E ] n + t  . 
Ax ' l.li ~ l J i+ t l2  \ l / i §  

2 _ h n --  h ~+l  At [(~[ --  h kn+i - -  = 

. ' .+ i  ' / k , j ~ + i  ~- : lT ,~ : i '  " 
- -  ( e l - -  h l j i  ] t~ ~1]i+t l2  - -  t - - l J i + t l 2 "  

The  equa t ions  in e l and h l ob ta ined  f r o m  the s y s t e m  (3.3) a f t e r  e l i m i n a t i n g  the funct ion  E l f r o m  it we re  
so lved  by  the f ac to r i z a t i on  method,  and the func t ion  E l was  ca l cu l a t ed  by us ing  the f i n i t e - d i f f e r e n c e  analog 
of the f i r s t  equat ion  of the s y s t e m  (3.2). 

I nves t i ga t i ng  the s e l e c t e d  d i f f e r ence  s c h e m e  for  s t ab i l i t y ,  we can  show that  i t  i s  s t ab le  for  any A r  

and Ax and gives  a s e c o n d - o r d e r  a p p r o x i m a t i o n  for  Ax and f i r s t - o r d e r  a p p r o x i m a t i o n  for  A T. 

The  a l g o r i t h m  d e s c r i b e d  above was  app l i e d  to the spec i a l  c a s e  of the p r o b l e m  of the g e n e r a t i o n  of 
a r ad io  pu l se  in  a nonconduc t ing  m e d i u m ,  which a d m i t s  of an ana ly t i c  so lu t ion  in  some  spe c i a l  c a s e s ;  one 
of these  is  g iven  in  [9]. The n u m e r i c a l  so lu t ion  co inc ided  with the ana ly t i c  so lu t ion  to five s i gn i f i c an t  
f i gu re s ,  which i nd i ca t e s  the high a c c u r a c y  of the a b o v e - d e s c r i b e d  a l g o r i t h m .  
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4. The spec i f ic  ca lcu la t ions  were  c a r r i e d  out for the 

following va lues  of the d i m e ns i on l e s s  p a r a m e t e r s :  ~ = 250; 

A = 8.3; A 1 = 4,* A = 2.93 �9 109; x 0 = 0.01; x k = 140 and for 
va lues  of the d i m e ns i on l e s s  coeff ic ient  R equal  to 1.54" 105; 
1.54" 106; 1.54.107;  1.54.108, c o r r e s p o n d i n g  to d i f fe ren t  sou rce  

i n t e ns i t i e s .  

The r e s u l t s  of the ca lcu la t ions  a r e  shown in F i g s .  1-7.  
On the b a s i s  of the r e s u l t s  obtained,  we can note the following 

f ea tu r e s :  

1. Each component  of the f ie ld shows an in i t i a l  s h o r t  
b u r s t  having a c h a r a c t e r i s t i c  t ime of va r i a t i on  of the o r d e r  of 

the t ime  sca l e  and c h a r a c t e r i z i n g  the f ront  of the pulse  of C o m p t o n - e l e c t r o n  c u r r e n t s .  (The cu rves  for  

va r ious  sou rce  in t ens i t i e s  in F i g s .  1-3 a re  for x = 0.4, in F ig .  6, for  x = 60; l = 1.) 

2. The f ie ld  component  E r p r e d o m i n a t e s  in the in i t i a l  b u r s t  a t  s m a l l  d i s t ances ,  and the value of the 
f ie ld  E r a t ta ins  i ts  m a x i m u m  value (E r ~ 1.76 �9 103 for  x ~ 0 A) when the C o m p t o n - e l e c t r o n  c u r r e n t  continues 
to i n c r e a s e .  This  is  shown in Fig .  l a ,  where  the so l id  curve shows the function f, the dashed  curve  shows 
f / r ,  and the do t -dashed  curve  shows the f i r s t  ha rmonic  Erl(T) for  x = 0.4; R = 1.54.105.  

3o Af te r  the in i t ia l  bu r s t ,  at sho r t  d i s t ances ,  for  some t ime (N 1-3 when x ~0.4) ,  the components  of 
the e l e c t r i c  f ie ld  a r e  sma l l ,  while the magnet ic  f ie ld  is  l a rge  and d i sp lays  a " sa tu ra t ion"  c h a r a c t e r ,  p a r -  
t i c u l a r l y  m a r k e d  for l a r g e  sou rce  in tens i t i e s  (F igs .  1-3).  

4. Af te r  a t tenuat ion of the source  for l a rge  va lues  of t, the magnet ic  f ie ld d i s a p p e a r s  at  shor t  d i s -  
t ances ,  and the e l e c t r i c  f ie ld  r e m a i n s  [F igs .  1, 4, 5 for  l = 1; Fig~ 4 shows the spa t i a l  d i s t r ibu t ion  of the 
f i r s t  harmonics  H~01(x ) (dashed curve) and E~l(x) (sol id curve) a t  the moments  when the front  of the d i s -  
tu rbance  r e a c h e s  d i s t ances  of 5, 10, and 20 (R = 1.54.105); F ig .  5 shows the same  for Erl(X)]. 

5. As the number  of the ha rmon ic  i n c r e a s e s ,  the ampl i tude  wil l  d e c r e a s e  and the number  of changes 
of sign of the f ie ld in the emi t t ed  pulse  wil l  i n c r e a s e  (in F ig .  7, I = 1 for  the do t -dashed  curve;  l = 3 for  the 
so l id  curve;  Z = 5 for  the dashed curve) .  

It can be seen  that  the in i t ia l  b u r s t  of the f ie ld is  caused  by the t ime de lay  of the developing conduc-  
t iv i ty  of the a i r  in r e l a t i on  to the Compton -e l ec t ron  c u r r e n t s .  F r o m  the equation for the r a d i a l  po l a r i z a t i on  
field,  which is obtained f rom the f i r s t  equation of the s y s t e m  (2.3) a f t e r  the quantity 1 (l + 1)x-2h/ is d i s -  
c a r d e d  and which d e s c r i b e s  f a i r ly  wel l  the r e s u l t s  of the solut ion of the comple te  s y s t e m  of equations at 
the ins tant  of t ime co r r e spond ing  to the in i t ia l  burs t ,  it  follows that for  s m a l l  va lues  of T the conduct ivi ty is 
sma l l ,  the a i r  is p o l a r i z e d  by the g a m m a - r a y  pulse ,  and the r a d i a l  f ie ld  i n c r e a s e s .  S ta r t ing  at  some ins tant  
of t ime,  the conduct ivi ty  l imi t s  the growth of the f ield at shor t  d i s t ances  and f inal ly  leads  to a d e c r e a s e  of 
the r a d i a l  f ield,  although the Compton -e l ec t ron  c u r r e n t  continues to i n c r e a s e .  Because  of the a s y m m e t r y  
of the p r o b l e m  it  is obvious that  in the zone of the c u r r e n t s  an in i t ia l  b u r s t  of a f ie ld with analogous t ime  
p r o p e r t i e s  wil l  a l so  ex is t  for  the components  E 0 and He, and these  p r o p e r t i e s  w i l l b e p r o p a g a t e d  to g r e a t e r  
d i s t ances ,  as can be seen  in F i g s .  4 and 6. 

The m o s t  impor t an t  of the p r o p e r t i e s  noted above for  the evolution of the f ie lds  in the zone of the 
source  at T va lues  of the o r d e r  of s e v e r a l  uni ts ,  a t  va r i ous  d i s t ances ,  wil l  appea r  at those t ime  va lues  for 
which the condit ion of high conduct ivi ty  2 w t  >> 1 is s a t i s f i ed  at these  d i s t ances  (for example ,  for  R = 1.54 " 
105 at  x ~ 0.4 this condit ion will  be s a t i s f i ed  when T ~ 1-2) .  The boundary of the h igh-conduc t iv i ty  reg ion  
moves  at  a r a t e  c lose  to the speed  of l ight .  Taking account of this  and a l so  making use of the r e s u l t s  of 
[6] concern ing  the expansion of a sphe re  with f inite conduct ivi ty  at  the speed  of l ight  in aa  ex te rna l  f ield,  
we can show, at  l e a s t  qua l i ta t ive ly ,  that  the behav ior  at these ins tants  of t ime of the f ie lds  found as  a r e s u l t  
of the numer i ca l  solut ion will  coincide with the behav ior  of the f ie lds  p roduced  by the g a m m a - r a y  pu lse  
in front  of a h igh-conduct iv i ty  region  boundary  moving at  nea r ly  the speed  of l ight .  A quant i ta t ive  e s t i m a t e  
shows that  the energy  of the r a d i a l  f ield in the ini t ia l  b u r s t  is suff icient  to explain,  on the b a s i s  of such 
a model ,  the ampl i tude  and dura t ion  of the emi t t ed  s igna ls  that  a r e  found b y  n u m e r i c a l  in tegra t ion .  

Obviously,  when the re  is  a f ie ld in a nons ta t ionary  conducting medium,  a space charge  a r i s e s  as a 
r e s u l t  of the p o l a r i z a t i o n  of the inhomogeneous conducting volume,  and this  charge  does not comple te ly  

�9 Approx ima te ly  the same  r e l a t ion  between the p a r a m e t e r s  A and A 1 is  obtained when the c u r r e n t s  due to 
Compton e l ec t rons  and the abso rbed  energy  f rom an ins tantaneous  source  a r e  ca lcu la t ed  by the Monte Car lo  
method.  
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d i sappear  as a - *  O; t he re fo re  in the zone of the source ,  where  the re  was conductivity,  for  l a rge  values of 
t there  r e m a i n s  a s ta t ic  dis t r ibut ion of the e lec t r i c  field.  This  fact  is a consequence of the or iginal  model ,  
in which the source  is a t tenuated exponential ly with t ime .  In another  model ,  for  example ,  when the intensi ty 
of a s i m i l a r  source  d e c r e a s e s  not to ze ro  but to a finite value,  the res idua l  fields resul t ing  f rom the non- 
s ta t ionary  g a m m a - r a y  pulse  will d i sappear ,  but in the zone of c u r r e n t s ,  for  l a rge  values of t, there  will 
appea r  another  dis t r ibut ion of fields,  d i scussed  in [3]. 

It should be  noted that  the f i r s t  ha rmonic  of the Legendre -po lynomia l  expansions of the wave field 
contain approx imate ly  95% of the energy  of the emi t ted  signal,  the th i rd  harmonic  contains approx imate ly  
3%, etc .  The fact  that the number  of ze ros  in the emi t ted  pulse  i n c r e a s e s  as the number  l i n c r e a s e s  is 
obvious enough, s ince in this case  the angular  dis t r ibut ion of fields and cu r ren t s  in the zone of the source  
becomes  mul t i leaved,  which, when we sum the resul t ing  signal with the cor responding  delay, leads to a 
l a r g e r  number  of changes of sign in the wave zone. 

In conclusion, the authors  wish to thank A. A. Milyutin and I. E.  Dinaburg for  working out the num-  
e r i ca l  methods used for  the solution of this p rob lem,  and also thank I.  N. Mikhailov and G. M. Gandel 'man 
for  the i r  par t ic ipa t ion  in the development  of the p rob l em.  
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